①
有些人相信,自然界也是一个策略博弈的参与者,而且心肠狠毒,整天想着怎样破坏我们早已定下的计划,以从中取乐。比如,当你听说下雨的概率是40%,这意味着,有六成概率是你带了雨伞上班而老天爷又没有下雨,另有四成机会则是你忘带雨伞而老天爷偏偏下起雨来。
在第2章,我们可以提供一个单一的、统一的原理,为相继行动的博弈确定最佳策略。这就是我们的法则1:向前展望,倒后推理。在这一章,事情不会那么简单。不过,关于同时行动必不可少的思维方式的思考可以总结为指导行动的三个简单法则。反过来,这些法则又基于两个简单概念:优势策略与均衡。与第2章一样,我们也会通过简单的例子解释这些概念和法则。
1 .优势策略
在棒球比赛里,假如一方已经有两个人出局,而又打出三个坏球和两个好球,那么,任何一名进攻上垒的球员都必须在下一次投球的时候跑向下一垒。这可以通过琢磨各种可能的情形得出来。在大多数情况下,攻垒球员怎么做无关紧要。假如击球手碰不到球,要么出现第四个坏球而攻垒球员成功上垒,要么出现第三个好球而这一局结束。假如投球手投出界外球,攻垒球员只消退回原先所在的垒。假如这是一个擦棒球而又被接住,那么这一局就结束了。不过,有一种情况跑动攻垒占有优势,即假如击球手将投球击到界外,那么攻垒球员就有很好的机会上垒或者得分。
我们认为,在这种局面下,跑动攻垒就是优势策略,即某些时候它胜于其他策略,且任何时候都不会比其他策略差。一般而言,假如一个球员有某一做法,无论其他球员怎么做,这个做法都会高出一筹,那么这个球员就有一个优势策略。假如一个球员拥有这么一个策略,他的决策就会变得非常简单;他可以选择这个优势策略,完全不必担心其他对手怎样行事。因此,寻找优势策略是每一个人的首要任务。
一旦你知道自己在找什么,你就会发现这个东西无所遁形,我们身边其实到处都是优势策略的有趣例子。比如印第安纳·琼斯(Indiana
Jones)在电影《印第安纳·琼斯与最后的十字军东征》(Indiana Jones and the Last
Crusade)的最紧张局势时所处的地位。印第安纳·琼斯、他的父亲以及纳粹分子全都聚集在安放圣杯的地方。眼看纳粹分子只差一步就要得到圣杯,琼斯父子却无论如何不愿意助封为虐。于是,纳粹分子打了琼斯父亲一枪。只有具备起死回生力量的圣杯才能救老琼斯博士的命。在这种情况下,琼斯只好引他们走向圣杯。不过,前面还有一个最后的挑战:琼斯必须在十几个杯子当中做出选择,选出耶稣基督用过的圣杯。圣杯可以使人永生不死,其他杯子却会致人于死地。纳粹头子迫不及待地拿起一个华丽的黄金杯,喝下里面的圣水,却突然倒地而死,因为他选错了,那不是圣杯。琼斯选了一个木头杯,那是一个木匠用的杯子。他一边大叫“只有一个办法可以证实”,一边将杯里的水倒出一点在圣水器上,自己先喝了下去,希望自己选中的就是生命之杯。当琼斯发现自己没搞错,立即把杯子送到他父亲那里,圣水果然治愈了致命的枪伤。
虽然这一幕增添了紧张气氛,但在一定程度上却让我们感到难堪,因为一个像印第安纳·琼斯博士那样了不起的教授,居然会看不到他的优势策略。他本来应该先把杯子递给他父亲,没有必要自己亲身尝试。假如琼斯确实选对了杯子,那他父亲就会得救。假如他选错了杯子,那他父亲就会丧命,却至少可以保全琼斯。在将杯子递给他父亲之前自己测试一下其实毫无用处,这是因为,假如琼斯选错了杯子,那就再也没有第二次机会了——琼斯将死于致命之水,而他父亲也会死于致命枪伤。①①
这个例子同时指出博弈论的弱点:人们单凭行为导致的结果给行为打分,行为本身则变得无足轻重。比如,即便印第安纳·琼斯的父亲已经受了致命枪伤,琼斯可能还是不愿意为导致父亲死亡的行为承担责任,一定要亲身试饮那杯水。
相比之下,寻找优势策略会比寻找圣杯容易一些。不妨想想英国桂冠诗人艾尔弗雷德·丁尼生爵士(Alfred,Lord
Tennyson)那令人耳熟能详的名句:“爱过之后失去总比从来没有爱过好。”'1'换言之,爱是一种优势策略。
2 .封面之战
回到《时代》与《新闻周刊》的竞争上来。假设有一个星期出了两桩大新闻:一是众议院和参议院就预算问题吵得不可开交;二是发布了一种据说对艾滋病有特效的新药。编辑们选择封面故事的时候,首要考虑的是哪一条新闻更能吸引报摊前的买主(订户则无论采用哪一条新闻做封面故事都会买这本杂志)。在报摊前的买主当中,假设30%的人对预算问题感兴趣,70%的人对艾滋病新药感兴趣。这些人只会在自己感兴趣的新闻变成封面故事的时候掏钱买杂志;假如两本杂志用了同一条新闻做封面故事,那么感兴趣的买主就会平分两组,一组买《时代》,另一组买《新闻周刊》
。现在,《时代》的编辑可以进行如下推理:“假如《新闻周刊》采用艾滋病新药做封面故事,那么,假如我采用预算问题,我就会得到整个‘预算问题市场’(即全体读者的30%
) ,假如我采用艾滋病新药,我们两家就会平分‘艾滋病新药市场’(即我得到全体读者的35%)
,因此,艾滋病新药为我带来的收入就会超过预算问题。假如《新闻周刊》采用预算问题,那么,假如我采用同样的故事,我会得到15%的读者,假如我采用艾滋病新药,就会得到70%的读者;这一次,第二方案同样会为我带来更大的收入。因此,我有一个优势策略,就是采用艾滋病新药做封面。无论我的对手选择采用上述两个新闻当中的哪一个,这一策略都会比我的其他策略更胜一筹。”
我们可以借助一个简单的表格,更加迅速而清晰地看出这番推理的逻辑性。我们用图3…1 中的两列表示《
新闻周刊》的对应选择,用两行表示《时代》的对应选择。这时我们得到四个格子,每一个格子对应一组策略。格子里的数字代表《时代》的销量,用购买《时代》的读者数占全体潜在读者数的百分比显示。第一行显示的是假如《时代》选择艾滋病新药,它在《新闻周刊》选择艾滋病新药或者预算问题的两种情况下的销量。第二行显示的是假如《时代》选择预算问题,它在《新闻周刊》选择艾滋病新药或者预算问题的两种情况下的销量。比如说,在左下角或者西南方向的格子,《时代》选择预算问题,《新闻周刊》选择艾滋病新药,结果《时代》得到30%的市场。
这个优势策略很容易看出来。第一行的两个格子无一例外都比第二朋行对应的格子占优,因为第一行的两个数字都比排在同一列下面的数字大。这是优势地位的特征。通过这个表格,你可以很快就看出这个特征是不是符合。你可以想像自己用第一行覆盖在第二行上面,然后会发现,盖住第二行的是更大的两个数字。相比之下,这个表格在阐述前面一段话的时候具有压倒语言推理的直观优势,而这种优势随着博弈的复杂程度加大而越发明显。在复杂的博弈当中,各方都有好几个策略。
《 新闻周刊》
的选择艾滋病新药预算问题图3…1《时代》的销售同理,在这个博弈里,双方都有一个优势策略。为了解释这一点,我们为《新闻周刊》的销量也画了一个表格(如图3…2
所示)。第一列数字显示的是假如《新闻周刊》采用艾滋病新药,它在《时代》采用艾滋病新药或者预算问题的两种情况下各有多大销量。这一列的两个数字无一例外都比第二列对应的数字占优,你可以再次想像自己拿起第一列覆盖在第二列上时会发现什么。因此,艾滋病新药对《新闻周刊》来说也是优势策略。
?
https://www.cwzww.com https://www.du8.org https://www.shuhuangxs.comabxsw.net dingdianshu.com bxwx9.net
kenshu.tw pashuba.com quanshu.la
tlxsw.cc qudushu.net zaidudu.org
duyidu.org baquge.cc kenshuge.cc
qushumi.com xepzw.com 3dllc.net